Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 1522-1536, 2023.
Article in English | WPRIM | ID: wpr-982821

ABSTRACT

While neuroblastoma accounts for 15% of childhood tumor-related deaths, treatments against neuroblastoma remain scarce and mainly consist of cytotoxic chemotherapeutic drugs. Currently, maintenance therapy of differentiation induction is the standard of care for neuroblastoma patients in clinical, especially high-risk patients. However, differentiation therapy is not used as a first-line treatment for neuroblastoma due to low efficacy, unclear mechanism, and few drug options. Through compound library screening, we accidently found the potential differentiation-inducing effect of AKT inhibitor Hu7691. The protein kinase B (AKT) pathway is an important signaling pathway for regulating tumorigenesis and neural differentiation, yet the relation between the AKT pathway and neuroblastoma differentiation remains unclear. Here, we reveal the anti-proliferation and neurogenesis effect of Hu7691 on multiple neuroblastoma cell lines. Further evidence including neurites outgrowth, cell cycle arrest, and differentiation mRNA marker clarified the differentiation-inducing effect of Hu7691. Meanwhile, with the introduction of other AKT inhibitors, it is now clear that multiple AKT inhibitors can induce neuroblastoma differentiation. Furthermore, silencing AKT was found to have the effect of inducing neuroblastoma differentiation. Finally, confirmation of the therapeutic effects of Hu7691 is dependent on inducing differentiation in vivo, suggesting that Hu7691 is a potential molecule against neuroblastoma. Through this study, we not only define the key role of AKT in the progression of neuroblastoma differentiation but also provide potential drugs and key targets for the application of differentiation therapies for neuroblastoma clinically.

2.
Acta Pharmaceutica Sinica B ; (6): 1225-1239, 2022.
Article in English | WPRIM | ID: wpr-929366

ABSTRACT

The dysregulation of transcription factors is widely associated with tumorigenesis. As the most well-defined transcription factor in multiple types of cancer, c-Myc can transform cells by transactivating various downstream genes. Given that there is no effective way to directly inhibit c-Myc, c-Myc targeting strategies hold great potential for cancer therapy. In this study, we found that WSB1, which has a highly positive correlation with c-Myc in 10 cancer cell lines and clinical samples, is a direct target gene of c-Myc, and can positively regulate c-Myc expression, which forms a feedforward circuit promoting cancer development. RNA sequencing results from Bel-7402 cells confirmed that WSB1 promoted c-Myc expression through the β-catenin pathway. Mechanistically, WSB1 affected β-catenin destruction complex-PPP2CA assembly and E3 ubiquitin ligase adaptor β-TRCP recruitment, which inhibited the ubiquitination of β-catenin and transactivated c-Myc. Of interest, the effect of WSB1 on c-Myc was independent of its E3 ligase activity. Moreover, overexpressing WSB1 in the Bel-7402 xenograft model could further strengthen the tumor-driven effect of c-Myc overexpression. Thus, our findings revealed a novel mechanism involved in tumorigenesis in which the WSB1/c-Myc feedforward circuit played an essential role, highlighting a potential c-Myc intervention strategy in cancer treatment.

3.
Acta Pharmaceutica Sinica B ; (6): 309-321, 2021.
Article in English | WPRIM | ID: wpr-881138

ABSTRACT

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

4.
Acta Pharmaceutica Sinica B ; (6): 1426-1439, 2020.
Article in English | WPRIM | ID: wpr-828798

ABSTRACT

The membrane protein claudin-3 (CLDN3) is critical for the formation and maintenance of tight junction and its high expression has been implicated in dictating malignant progression in various cancers. However, the post-translational modification of CLDN3 and its biological function remains poorly understood. Here, we report that CLDN3 is positively correlated with ovarian cancer progression both and Of interest, CLDN3 undergoes -palmitoylation on three juxtamembrane cysteine residues, which contribute to the accurate plasma membrane localization and protein stability of CLDN3 Moreover, the deprivation of -palmitoylation in CLDN3 significantly abolishes its tumorigenic promotion effect in ovarian cancer cells. By utilizing the co-immunoprecipitation assay, we further identify ZDHHC12 as a CLDN3-targating palmitoyltransferase from 23 ZDHHC family proteins. Furthermore, the knockdown of ZDHHC12 also significantly inhibits CLDN3 accurate membrane localization, protein stability and ovarian cancer cells tumorigenesis Thus, our work reveals -palmitoylation as a novel regulatory mechanism that modulates CLDN3 function, which implies that targeting ZDHHC12-mediated CLDN3 -palmitoylation might be a potential strategy for ovarian cancer therapy.

5.
Acta Pharmaceutica Sinica B ; (6): 484-495, 2019.
Article in English | WPRIM | ID: wpr-774961

ABSTRACT

Metastasis-associated drug resistance accounts for high mortality in ovarian cancer and remains to be a major barrier for effective treatment. In this study, SKOV3/T4, a metastatic subpopulation of ovarian cancer SKOV3 cells, was enriched to explore potential interventions against metastatic-associated drug resistance. Quantitative genomic and functional analyses were performed and found that slug was significantly increased in the SKOV3/T4 subpopulation and contributed to the high resistance of SKOV3/T4. Further studies showed that slug activated c-Met in a ligand-independent manner due to elevated levels of fibronectin and provoked integrin V function, which was confirmed by the significant correlation of slug and p-Met levels in 121 ovarian cancer patient samples. Intriguingly, c-Met inhibitor(s) exhibited greatly enhanced anti-cancer effects in slug-positive ovarian cancer models both and . Additionally, IHC analyses revealed that slug levels were highly correlated with reduced survival of ovarian cancer patients. Taken together, this study not only uncovers the critical roles of slug in drug resistance in ovarian cancer but also highlights a promising therapeutic strategy by targeting the noncanonical activation of c-Met in slug-positive ovarian cancer patients with poor prognosis.

6.
Acta Pharmaceutica Sinica B ; (6): 1008-1020, 2019.
Article in English | WPRIM | ID: wpr-774926

ABSTRACT

Renal cell carcinoma (RCC) is one of the most common malignant tumors affecting the urogenital system, accounting for 90% of renal malignancies. Traditional chemotherapy options are often the front-line choice of regimen in the treatment of patients with RCC, but responses may be modest or limited due to resistance of the tumor to anticarcinogen. Downregulated expression of organic cation transporter OCT2 is a possible mechanism underlying oxaliplatin resistance in RCC treatment. In this study, we observed that miR-489-3p and miR-630 suppress OCT2 expression by directly binding to the OCT2 3'-UTR. Meanwhile, 786-O-OCT2-miRNAs stable expression cell models, we found that miRNAs could repress the classic substrate 1-methyl-4-phenylpyridinium (MPP), fluorogenic substrate ,-dimethyl-4-(2-pyridin-4-ylethenyl) aniline (ASP), and oxaliplatin uptake by OCT2 both and in xenografts. In 33 clinical samples, miR-489-3p and miR-630 were significantly upregulated in RCC, negatively correlating with the OCT2 expression level compared to that in adjacent normal tissues, using tissue microarray analysis and qPCR validation. The increased binding of c-Myc to the promoter of pri-miR-630, responsible for the upregulation of miR-630 in RCC, was further evidenced by chromatin immunoprecipitation and dual-luciferase reporter assay. Overall, this study indicated that miR-489-3p and miR-630 function as oncotherapy-obstructing microRNAs by directly targeting OCT2 in RCC.

SELECTION OF CITATIONS
SEARCH DETAIL